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Recap

* Real-Time Search methods are very interesting for online application.

 LRTA* is the most used algorithm.

* Explore a
* The local search space can be
* Or .
* Update the h-values after each trial.
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Analyze of LRTA*

* Lemma.

* Foralltimest = 0,1,2, ... (until termination): Consider the (t + 1)t value-update step of

LRTA*. Let S/ refer to its local search space. Let ht(u) € [0, o] and ht*t1(u) € [0, oo] refer
to the h-values immediately before and after, respectively, the value-update step. Then, for
all states u € S, the value-update step terminates with

ht(u), if s & Sl

t+1 (00 —
hg o (W)= max{ht(u), rer}li(n){w(u, a) + ht*1(Succ(u, a))}}, otherwise
a u
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Analyze of LRTA*

e A disadvantage of LRTA* is that it cannot solve all search tasks.
* Because it interleaves searches and action executions.

* All search methods can solve problem for which the goal distance of the start
state is finite.

« Why limits the solvable search
tasks?

* Actions are executed before their consequences are known.
* Even if the goal distance of the start is finite, LRTA* could
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Analyze of LRTA*

 LRTA* is guaranteed to solve all search tasks in safely explorable state spaces.

» State spaces are safely explorable iff
* The of the search tree is finite.

* For safely explorable state spaces where all action costs are one, d < n — 1.

e All states that or
can be deleted.
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Analyze of LRTA*

» Safe explorable state spaces guarantee that LRTA* can reach a goal state no matter which

e Strongly connected state spaces.
* Every state can be reached from every other state.

 When the state space is not safely explorable.
e LRTA* willendupina
* Orreach a state with and then executes actions forever.

e Get information from the local search space to detect that the goal is not reachable anymore.
in the literature.
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Analyze of LRTA*

e Theorem: LRTA* always reaches a goal state with a finite execution cost in all
safely explorable spaces.
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Analyze of LRTA*
 The idea behind the proof:

e |If LRTA* did not reach a goal state, then it would cycle forever.
* Since the state space is safely explorable, there must be some way out of the cycle.
 We want to show that LRTA* will eventually executes an action that takes it out of the cycle.
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Analyze of LRTA*

* How to show that LRTA* will execute an action that leave the the cycle?

Step t Stept + oo

h(w) = x (w) =x
@ @ 8 @ @ g

The heuristic will grow

after each trial.
h(u,) = 2 @ At one point the h-value h(u,) = @
of the states in the cycle
will be superior to the h-

@ @ value of a state outside @ @

the cycle.
h(u,) = 2 h(uz) =2 h(u,) = o h(us) = o
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Analyze LRTA*

* We will discuss the performance of LRTA*.
* The performance is measured by its

 The complexity of LRTA* is its

e Remember that we want to know how it scales as the state spaces get larger.

* We measure the size of the state space as x = nd, the product of the number of states and
the depth.

O (x) is the upper complexity bound.
Q(x) is the lower complexity bound.
O (x) is the tight complexity bound.
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Analyze LRTA*

e Calculate the upper bound on the Execution Cost of LRTA*.

* First, we calculate the upper bound of the execution cost LRTA* at time t.

* Lemma.

e Foralltimest = 0,1,2, ... it holds that the execution cost of LRTA* with admissible initial h-values h° at
time t is at most Y es[hf(u) — KO (w)] — (At (u?) — hO(u®)).
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Analyze LRTA*

* Proof by induction:
 Done in class.

 We use this lemma to derive the

 Theorem (Completeness of LRTA*):

e LRTA* with admissible initial h-values h° reaches a goal state with an execution cost of at
most h%(s) + Y es[6(u, T) — hO(w)].

* Tueslh* @) — h°)] = (' W) = R°(w®)) < Tyuesl6@w, T) — R°(W)] + h°(u®)
y =h7(s) + Zues[6(u, T) — h°(w)]
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Analyze LRTA*

* Since the goal distances are finite in safely explorable state spaces and the

e The previous theorem shows that LRTA* reaches a goal state with an execution cost of at most
YuesO(u, T).

* Thus, after

* One consequence is that search tasks where all states are clustered around the goal are easier
to solve with LRTA*,.

e Why?
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Analyze LRTA*

 Example of (n? — 1)-puzzle:
* Itis a problem considered hard, because it has a small goal density.
* The 8-puzzle has , but one goal.
* You could think that you need to explore lot of states before finding the goal.
e But the average goal distance is only 21.5!
* And it’s maximal distance 30.

* The tiles forms a ring around the center.
* The tiles are never moved far away from the goal by LRTA*.

* Even if a mistakes is made. 1,23
* So LRTA* is perfect for this problem.
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Features of LRTA*

* There are some features of LRTA* we didn’t speak about.

e Heuristic knowledge:
e LRTA* uses heuristics to guide the search.

* By larger, we mean more informed (closest to the real distance).
* LRTA* is fully informed iff the initial h-values equals the goal distances.
* Its execution cost is worst-case optimal.

* No other search methods
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Features of LRTA*

* Fine-grained control:
* You can choose how much search to perform between actions by varying the sizes of the
local search spaces.

* Large local search space performs , like A%,
* It slows the search but provides the and minimize the executions.
* Minimal local search spaces perform almost no searches.

* For time constraints problems, LRTA* can be used as an
e Algorithms that can solve a search tasks with
* You can and have an action to execute.
e The quality depends on the time allowed.
* Particularly useful in robotics and adversarial games.
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Features of LRTA*

* Fine-grained control:
* In this context we can distinguish two types of agents.
* Fast-Acting agents:
between actions.
e Agents for which the compared to their search speed.
* Examples of the sliding puzzles. The action are only an update of values in memory.

* Slow-Acting agents:
between actions.
e Agents for which the compared to their execution speed.

* Robots are examples of slow-acting agents. It takes time to move, so you can search longer.
* Exceptions of critical systems!
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Features of LRTA*

* Improvement of execution cost:
If the heuristic is not completely informed the execution cost is not minimal.
Assuming LRTA* solves a series of search tasks in the with the

 If the initial h-values are admissible for the first search task.
* They are also for the first search task
* Then, they are
The start states can be different while keeping the h values.
* Because the admissibility does not depend on the start state.
You can reuse this knowledge and improve the execution cost.
* After some time, you could obtain a fully informed heuristic.
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Features of LRTA*

* Improvement of execution cost:

 Theorem (Convergence of LRTA*):

* Assume that LRTA* maintains h-values across a series of search tasks in the same safely
explorable state space with the same set of goal states.

* Then, the number of search tasks for which LRTA* with admissible initial h-values reaches a goal
state with an execution cost of more than 6 (s, T) is bounded from above.

* Assume that LRTA* solves the same search task repeatedly from the same start state.
* The h-values no longer change after a finite number of searches.
* LRTA* follows the same minimal-cost path from the start to a goal during all future searches.
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Features of LRTA*

Improvement of execution cost:

h-value surface - -

h-value surface - -

O =~ N W &~ O
I I I I 1
O-=-NWPHrOTON
T T T T T 1
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Variants of LRTA*

e Some variants of LRTA* have been proposed.

e Variants with local search spaces of varying sizes:
e With small local search spaces, you need to

* You can increase to find a path outside the valley.

h-value surface - -

O =~ N W &~ O
1T T T 1
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Variants of LRTA*

 |f the current h-value is smaller than the cost-to-go of every actions.

 When you detect a depression:
* You start increasing the local search space.
* You stop when all the states part of the valley are inside it.
 States stop to be included when an action exists with a cost-to-go inferior to the h-value.

h-value surface - -

O =~ N W &~ O
1T T T 1
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Variants of LRTA*

* Variants with minimal lookahead.
 LRTA* needs to predict the successor states of actions.
e \We can decrease its lookahead further.

* We associate the values with state-action pairs rather than states.
* We call it g-value q(u, a).

Procedure Min-LRTA*
Input: Search task with initial g-values
Side Effect: Updated g-values

U <S5 -+ Start in start state
while (u ¢ T) ;; While goal not achieved
a <— argmingea ) q(u, a) .» Select action
q(u,a) < max{q(u,a),w(u,a) —l—mina,eA(SUCC(M))q(SUCC(u,a),a’)} ;; Update g-value
u < a(u) -+ Execute action
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Variants of LRTA*

* Reinforcement learning is based on g-values.
* You try to learn the value of each action in each states.

* [t’s very interesting, because it works in model-free problem.
* Problem where you don’t know the model.
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