
CSCI-564
CONSTRAINT PROCESSING AND 
HEURISTIC SEARCH 

Dr. Jean-Alexis Delamer

DEPARTMENT OF COMPUTER SCIENCE

L E C T U R E  1 5 - R E A L - T I M E  S E A R C H



U N I V E R S I T Y  A S  I T ’ S  M E A N T  T O  B E

• Real-Time Search methods are very interesting for online application.
• LRTA* is the most used algorithm.

• Explore a local search space.
• The local search space can be minimal.
• Or maximal.

• Update the ℎ-values after each trial.

Recap

D R .  J E A N - A L E X I S  D E L A M E R  - S T F X  U N I V E R S I T Y



U N I V E R S I T Y  A S  I T ’ S  M E A N T  T O  B E

• Lemma.
• For all times 𝑡 = 0,1,2, … (until termination): Consider the (𝑡 + 1)st value-update step of 

LRTA*. Let 𝑆!""# refer to its local search space. Let ℎ# 𝑢 ∈ [0,∞] and ℎ#$% 𝑢 ∈ [0,∞] refer 
to the ℎ-values immediately before and after, respectively, the value-update step. Then, for 
all states 𝑢 ∈ 𝑆, the value-update step terminates with

ℎ#$%(𝑢) = 2
ℎ# 𝑢 , if 𝑠 ∉ 𝑆!""#

max{ℎ# 𝑢 , min
&∈((*)

{𝑤 𝑢, 𝑎 + ℎ#$%(𝑆𝑢𝑐𝑐 𝑢, 𝑎 )}} , otherwise

Analyze of LRTA*

We update only the state in the local search space.
D R .  J E A N - A L E X I S  D E L A M E R  - S T F X  U N I V E R S I T Y



U N I V E R S I T Y  A S  I T ’ S  M E A N T  T O  B E

• A disadvantage of LRTA* is that it cannot solve all search tasks.
• Because it interleaves searches and action executions.

• All search methods can solve problem for which the goal distance of the start 
state is finite.

• Why interleaving searches and actions execution limits the solvable search 
tasks?
• Actions are executed before their consequences are known.

• Even if the goal distance of the start is finite, LRTA* could accidentally executes actions that lead 
to a state with infinite goal distance.

Analyze of LRTA*

D R .  J E A N - A L E X I S  D E L A M E R  - S T F X  U N I V E R S I T Y



U N I V E R S I T Y  A S  I T ’ S  M E A N T  T O  B E

• LRTA* is guaranteed to solve all search tasks in safely explorable state spaces.
• State spaces are safely explorable iff the goal distances of all states are finite.

• The depth of the search tree is finite.

• For safely explorable state spaces where all action costs are one, 𝑑 ≤ 𝑛 − 1.
• All states that cannot be reached from the start state or can be reached but through a goal 

state can be deleted.

Analyze of LRTA*

D R .  J E A N - A L E X I S  D E L A M E R  - S T F X  U N I V E R S I T Y



U N I V E R S I T Y  A S  I T ’ S  M E A N T  T O  B E

• Safe explorable state spaces guarantee that LRTA* can reach a goal state no matter which 
actions it has executed in the past.

• Do you have an example of a safely explorable state space?
• Strongly connected state spaces.

• Every state can be reached from every other state.

• When the state space is not safely explorable.
• LRTA* will end up in a goal state.
• Or reach a state with goal distance infinity and then executes actions forever.

• How would you modify LRTA* to solve this problem?
• Get information from the local search space to detect that the goal is not reachable anymore.
• Complicated and not done in the literature.

Analyze of LRTA*

D R .  J E A N - A L E X I S  D E L A M E R  - S T F X  U N I V E R S I T Y



U N I V E R S I T Y  A S  I T ’ S  M E A N T  T O  B E

• We will assume that the state spaces are safely explorable.

• Theorem: LRTA* always reaches a goal state with a finite execution cost in all 
safely explorable spaces.

Analyze of LRTA*

D R .  J E A N - A L E X I S  D E L A M E R  - S T F X  U N I V E R S I T Y



U N I V E R S I T Y  A S  I T ’ S  M E A N T  T O  B E

• The idea behind the proof:
• If LRTA* did not reach a goal state, then it would cycle forever.
• Since the state space is safely explorable, there must be some way out of the cycle.
• We want to show that LRTA* will eventually executes an action that takes it out of the cycle.

Analyze of LRTA*

D R .  J E A N - A L E X I S  D E L A M E R  - S T F X  U N I V E R S I T Y



U N I V E R S I T Y  A S  I T ’ S  M E A N T  T O  B E

• How to show that LRTA* will execute an action that leave the the cycle?

Analyze of LRTA*

s 𝑢! g

𝑢"

𝑢# 𝑢$

Step t

ℎ(𝑢") = 2

ℎ 𝑢! = 𝑥
s 𝑢! g

𝑢"

𝑢# 𝑢$

Step t + ∞
ℎ 𝑢! = 𝑥

ℎ(𝑢#) = 2 ℎ(𝑢$) = 2

ℎ(𝑢") = ∞

ℎ(𝑢#) = ∞ ℎ(𝑢$) = ∞

The heuristic will grow 
after each trial.

At one point the ℎ-value 
of the states in the cycle 
will be superior to the ℎ-
value of a state outside 

the cycle.

D R .  J E A N - A L E X I S  D E L A M E R  - S T F X  U N I V E R S I T Y



U N I V E R S I T Y  A S  I T ’ S  M E A N T  T O  B E

• We will discuss the performance of LRTA*.
• The performance is measured by its execution cost.

• The complexity of LRTA* is its worst-case execution cost.
• Remember that we want to know how it scales as the state spaces get larger.
• We measure the size of the state space as 𝑥 = 𝑛𝑑, the product of the number of states and 

the depth.

• Quick recap:
• 𝑂(𝑥) is the upper complexity bound.
• Ω(𝑥) is the lower complexity bound.
• Θ(𝑥) is the tight complexity bound.

Analyze LRTA*

D R .  J E A N - A L E X I S  D E L A M E R  - S T F X  U N I V E R S I T Y



U N I V E R S I T Y  A S  I T ’ S  M E A N T  T O  B E

• Calculate the upper bound on the Execution Cost of LRTA*.

• First, we calculate the upper bound of the execution cost LRTA* at time 𝑡.
• Lemma.

• For all times 𝑡 = 0,1,2, … it holds that the execution cost of LRTA* with admissible initial ℎ-values ℎ% at 
time 𝑡 is at most ∑&∈( ℎ) 𝑢 − ℎ% 𝑢 − (ℎ) 𝑢) − ℎ% 𝑢% ).

Analyze LRTA*

D R .  J E A N - A L E X I S  D E L A M E R  - S T F X  U N I V E R S I T Y



U N I V E R S I T Y  A S  I T ’ S  M E A N T  T O  B E

• Proof by induction:
• Done in class.

• We use this lemma to derive the upper bound on the execution cost.
• Theorem (Completeness of LRTA*):

• LRTA* with admissible initial ℎ-values ℎ, reaches a goal state with an execution cost of at 
most ℎ, 𝑠 + ∑*∈-[𝛿 𝑢, 𝑇 − ℎ,(𝑢)].

• Proof:
• ∑*∈- ℎ# 𝑢 − ℎ, 𝑢 − ℎ# 𝑢# − ℎ, 𝑢, ≤ ∑*∈- 𝛿 𝑢, 𝑇 − ℎ, 𝑢 + ℎ,(𝑢,)
• = ℎ, 𝑠 + ∑*∈-[𝛿 𝑢, 𝑇 − ℎ,(𝑢)]

Analyze LRTA*

D R .  J E A N - A L E X I S  D E L A M E R  - S T F X  U N I V E R S I T Y



U N I V E R S I T Y  A S  I T ’ S  M E A N T  T O  B E

• Since the goal distances are finite in safely explorable state spaces and the minimal action cost 
𝑤./0 is strictly positive.

• The previous theorem shows that LRTA* reaches a goal state with an execution cost of at most 
∑*∈- 𝛿 𝑢, 𝑇 .
• Thus, after at most ∑!∈# + &,-

.$%&
actions.

• One consequence is that search tasks where all states are clustered around the goal are easier 
to solve with LRTA*.
• Why?

Analyze LRTA*

D R .  J E A N - A L E X I S  D E L A M E R  - S T F X  U N I V E R S I T Y



U N I V E R S I T Y  A S  I T ’ S  M E A N T  T O  B E

• Example of (𝑛2 − 1)-puzzle:
• It is a problem considered hard, because it has a small goal density.
• The 8-puzzle has 181 440 states, but one goal.

• You could think that you need to explore lot of states before finding the goal.
• But the average goal distance is only 21.5!

• And it’s maximal distance 30.
• Why?

• The tiles forms a ring around the center.
• The tiles are never moved far away from the goal by LRTA*.
• Even if a mistakes is made.

• So LRTA* is perfect for this problem.

Analyze LRTA*

8
3

56

2

7
4

1

D R .  J E A N - A L E X I S  D E L A M E R  - S T F X  U N I V E R S I T Y



U N I V E R S I T Y  A S  I T ’ S  M E A N T  T O  B E

• There are some features of LRTA* we didn’t speak about.
• Heuristic knowledge:

• LRTA* uses heuristics to guide the search.
• The larger the initial ℎ-values, the smaller upper bound on its execution cost.

• By larger, we mean more informed (closest to the real distance).
• LRTA* is fully informed iff the initial ℎ-values equals the goal distances.
• Its execution cost is worst-case optimal.

• No other search methods can do better in the worst-case.

Features of LRTA*

D R .  J E A N - A L E X I S  D E L A M E R  - S T F X  U N I V E R S I T Y



U N I V E R S I T Y  A S  I T ’ S  M E A N T  T O  B E

• Fine-grained control:
• You can choose how much search to perform between actions by varying the sizes of the 

local search spaces.
• Large local search space performs a complete search, like A*.
• It slows the search but provides the minimal-cost paths and minimize the executions.
• Minimal local search spaces perform almost no searches.

• For time constraints problems, LRTA* can be used as an anytime algorithm.
• Algorithms that can solve a search tasks with any bound on their search cost.
• You can stop the search anytime and have an action to execute.
• The quality depends on the time allowed.
• Particularly useful in robotics and adversarial games.

Features of LRTA*

D R .  J E A N - A L E X I S  D E L A M E R  - S T F X  U N I V E R S I T Y



U N I V E R S I T Y  A S  I T ’ S  M E A N T  T O  B E

• Fine-grained control:
• In this context we can distinguish two types of agents.
• Fast-Acting agents:

• A smaller amount of search between actions.
• Agents for which the execution speed is fast compared to their search speed.
• Examples of the sliding puzzles. The action are only an update of values in memory.

• Slow-Acting agents:
• A larger amount of search between actions.
• Agents for which the search speed is fast compared to their execution speed.
• Robots are examples of slow-acting agents. It takes time to move, so you can search longer.

• Exceptions of critical systems!

Features of LRTA*

D R .  J E A N - A L E X I S  D E L A M E R  - S T F X  U N I V E R S I T Y



U N I V E R S I T Y  A S  I T ’ S  M E A N T  T O  B E

• Improvement of execution cost:
• If the heuristic is not completely informed the execution cost is not minimal.
• Assuming LRTA* solves a series of search tasks in the same state space with the same sets of 

goal.
• If the initial ℎ-values are admissible for the first search task.
• They are also admissible for the first search task after the updates.
• Then, they are admissible for the other search tasks.

• The start states can be different while keeping the ℎ-values.
• Because the admissibility does not depend on the start state.

• You can reuse this knowledge and improve the execution cost.
• After some time, you could obtain a fully informed heuristic.

Features of LRTA*

D R .  J E A N - A L E X I S  D E L A M E R  - S T F X  U N I V E R S I T Y



U N I V E R S I T Y  A S  I T ’ S  M E A N T  T O  B E

• Improvement of execution cost:
• Theorem (Convergence of LRTA*):

• Assume that LRTA* maintains ℎ-values across a series of search tasks in the same safely 
explorable state space with the same set of goal states. 

• Then, the number of search tasks for which LRTA* with admissible initial ℎ-values reaches a goal 
state with an execution cost of more than 𝛿(𝑠, 𝑇) is bounded from above.

• Proof (informal):
• Assume that LRTA* solves the same search task repeatedly from the same start state.
• The ℎ-values no longer change after a finite number of searches.
• LRTA* follows the same minimal-cost path from the start to a goal during all future searches.

Features of LRTA*

D R .  J E A N - A L E X I S  D E L A M E R  - S T F X  U N I V E R S I T Y



U N I V E R S I T Y  A S  I T ’ S  M E A N T  T O  B E

• Improvement of execution cost:

Features of LRTA*

4

3 2

5 4 3 2

1

0

A

B

C

1 2 3 4

D R .  J E A N - A L E X I S  D E L A M E R  - S T F X  U N I V E R S I T Y



U N I V E R S I T Y  A S  I T ’ S  M E A N T  T O  B E

• Some variants of LRTA* have been proposed.
• Variants with local search spaces of varying sizes:

• With small local search spaces, you need to executes a lot of actions before escaping 
depressions (valleys).

• You can increase the size of the local search spaces to find a path outside the valley.

Variants of LRTA*

D R .  J E A N - A L E X I S  D E L A M E R  - S T F X  U N I V E R S I T Y



U N I V E R S I T Y  A S  I T ’ S  M E A N T  T O  B E

• How can you detect valleys?
• If the current ℎ-value is smaller than the cost-to-go of every actions.

• When you detect a depression:
• You start increasing the local search space.
• You stop when all the states part of the valley are inside it.
• States stop to be included when an action exists with a cost-to-go inferior to the ℎ-value.

Variants of LRTA*

D R .  J E A N - A L E X I S  D E L A M E R  - S T F X  U N I V E R S I T Y



U N I V E R S I T Y  A S  I T ’ S  M E A N T  T O  B E

• Variants with minimal lookahead.
• LRTA* needs to predict the successor states of actions.
• We can decrease its lookahead further.

• We associate the values with state-action pairs rather than states.
• We call it 𝑞-value 𝑞(𝑢, 𝑎).

Variants of LRTA*

D R .  J E A N - A L E X I S  D E L A M E R  - S T F X  U N I V E R S I T Y



U N I V E R S I T Y  A S  I T ’ S  M E A N T  T O  B E

• Reinforcement learning is based on 𝑞-values.

• You try to learn the value of each action in each states.

• It’s very interesting, because it works in model-free problem.
• Problem where you don’t know the model.

Variants of LRTA*

D R .  J E A N - A L E X I S  D E L A M E R  - S T F X  U N I V E R S I T Y


