DEPARTMENT OF COMPUTER SCIENCE

CSCI-564 CONSTRAINT PROCESSING AND HEURISTIC SEARCH

LECTURE 15- REAL-TIME SEARCH

Dr. Jean-Alexis Delamer

Recap

- Real-Time Search methods are very interesting for online application.
- LRTA* is the most used algorithm.
 - Explore a local search space.
 - The local search space can be minimal.
 - Or maximal.
 - Update the *h*-values after each trial.

• Lemma.

StFX

• For all times t = 0,1,2,... (until termination): Consider the $(t + 1)^{st}$ value-update step of LRTA*. Let S_{lss}^t refer to its local search space. Let $h^t(u) \in [0,\infty]$ and $h^{t+1}(u) \in [0,\infty]$ refer to the *h*-values immediately before and after, respectively, the value-update step. Then, for all states $u \in S$, the value-update step terminates with

$$h^{t+1}(u) = \begin{cases} h^t(u), & \text{if } s \notin S_{lss}^t \\ \max\{h^t(u), \min_{a \in A(u)}\{w(u, a) + h^{t+1}(Succ(u, a))\}\}, \text{otherwise} \end{cases}$$

We update only the state in the local search space.

STFX

- A disadvantage of LRTA* is that it cannot solve all search tasks.
 - Because it interleaves searches and action executions.
- All search methods can solve problem for which the goal distance of the start state is finite.
- Why interleaving searches and actions execution limits the solvable search tasks?
 - Actions are executed before their consequences are known.
 - Even if the goal distance of the start is finite, LRTA* could accidentally executes actions that lead to a state with infinite goal distance.

- LRTA* is guaranteed to solve all search tasks in safely explorable state spaces.
- State spaces are safely explorable iff the goal distances of all states are finite.
 - The depth of the search tree is finite.
- For safely explorable state spaces where all action costs are one, $d \le n 1$.
 - All states that cannot be reached from the start state or can be reached but through a goal state can be deleted.

- Safe explorable state spaces guarantee that LRTA* can reach a goal state no matter which actions it has executed in the past.
- Do you have an example of a safely explorable state space?
 - Strongly connected state spaces.
 - Every state can be reached from every other state.
- When the state space is not safely explorable.
 - LRTA* will end up in a goal state.
 - Or reach a state with goal distance infinity and then executes actions forever.
- How would you modify LRTA* to solve this problem?
 - Get information from the local search space to detect that the goal is not reachable anymore.
 - Complicated and not done in the literature.

- We will assume that the state spaces are safely explorable.
- Theorem: LRTA* always reaches a goal state with a finite execution cost in all safely explorable spaces.

- The idea behind the proof:
 - If LRTA* did not reach a goal state, then it would cycle forever.
 - Since the state space is safely explorable, there must be some way out of the cycle.
 - We want to show that LRTA* will eventually executes an action that takes it out of the cycle.

StFX

How to show that LRTA* will execute an action that leave the the cycle?

The heuristic will grow after each trial. At one point the *h*-value of the states in the cycle will be superior to the *h*value of a state outside the cycle.

- We will discuss the performance of LRTA*.
 - The performance is measured by its execution cost.
- The complexity of LRTA* is its worst-case execution cost.
 - Remember that we want to know how it scales as the state spaces get larger.
 - We measure the size of the state space as x = nd, the product of the number of states and the depth.
- Quick recap:
 - O(x) is the upper complexity bound.
 - $\Omega(x)$ is the lower complexity bound.
 - $\Theta(x)$ is the tight complexity bound.

- Calculate the upper bound on the Execution Cost of LRTA*.
- First, we calculate the upper bound of the execution cost LRTA* at time t.
- Lemma.

StFX

• For all times t = 0,1,2,... it holds that the execution cost of LRTA* with admissible initial h-values h^0 at time t is at most $\sum_{u \in S} [h^t(u) - h^0(u)] - (h^t(u^t) - h^0(u^0)).$

- Proof by induction:
 - Done in class.
- We use this lemma to derive the upper bound on the execution cost.
- Theorem (Completeness of LRTA*):
 - LRTA* with admissible initial *h*-values h^0 reaches a goal state with an execution cost of at most $h^0(s) + \sum_{u \in S} [\delta(u, T) h^0(u)]$.
- Proof:
 - $\sum_{u \in S} [h^t(u) h^0(u)] (h^t(u^t) h^0(u^0)) \le \sum_{u \in S} [\delta(u, T) h^0(u)] + h^0(u^0)$ • $= h^0(s) + \sum_{u \in S} [\delta(u, T) - h^0(u)]$

- Since the goal distances are finite in safely explorable state spaces and the minimal action cost *w*_{min} is strictly positive.
- The previous theorem shows that LRTA* reaches a goal state with an execution cost of at most $\sum_{u \in S} \delta(u, T)$.
 - Thus, after at most $\frac{\sum_{u \in S} \delta(u,T)}{w_{min}}$ actions.
- One consequence is that search tasks where all states are clustered around the goal are easier to solve with LRTA*.
 - Why?

- Example of $(n^2 1)$ -puzzle:
 - It is a problem considered hard, because it has a small goal density.
 - The 8-puzzle has 181 440 states, but one goal.
 - You could think that you need to explore lot of states before finding the goal.
 - But the average goal distance is only 21.5!
 - And it's maximal distance 30.
 - Why?
 - The tiles forms a ring around the center.
 - The tiles are never moved far away from the goal by LRTA*.
 - Even if a mistakes is made.
 - So LRTA* is perfect for this problem.

1	2	3
8		4
7	6	5

- There are some features of LRTA* we didn't speak about.
- Heuristic knowledge:
 - LRTA* uses heuristics to guide the search.
 - The larger the initial *h*-values, the smaller upper bound on its execution cost.
 - By larger, we mean more informed (closest to the real distance).
 - LRTA* is fully informed iff the initial *h*-values equals the goal distances.
 - Its execution cost is worst-case optimal.
 - No other search methods can do better in the worst-case.

- Fine-grained control:
 - You can choose how much search to perform between actions by varying the sizes of the local search spaces.
 - Large local search space performs a complete search, like A*.
 - It slows the search but provides the minimal-cost paths and minimize the executions.
 - Minimal local search spaces perform almost no searches.
 - For time constraints problems, LRTA* can be used as an anytime algorithm.
 - Algorithms that can solve a search tasks with any bound on their search cost.
 - You can stop the search anytime and have an action to execute.
 - The quality depends on the time allowed.
 - Particularly useful in robotics and adversarial games.

- Fine-grained control:
 - In this context we can distinguish two types of agents.
 - Fast-Acting agents:
 - A smaller amount of search between actions.
 - Agents for which the execution speed is fast compared to their search speed.
 - Examples of the sliding puzzles. The action are only an update of values in memory.
 - Slow-Acting agents:
 - A larger amount of search between actions.
 - Agents for which the search speed is fast compared to their execution speed.
 - Robots are examples of slow-acting agents. It takes time to move, so you can search longer.
 - Exceptions of critical systems!

- Improvement of execution cost:
 - If the heuristic is not completely informed the execution cost is not minimal.
 - Assuming LRTA* solves a series of search tasks in the same state space with the same sets of goal.
 - If the initial *h*-values are admissible for the first search task.
 - They are also admissible for the first search task after the updates.
 - Then, they are admissible for the other search tasks.
 - The start states can be different while keeping the *h*-values.
 - Because the admissibility does not depend on the start state.
 - You can reuse this knowledge and improve the execution cost.
 - After some time, you could obtain a fully informed heuristic.

- Improvement of execution cost:
 - Theorem (Convergence of LRTA*):
 - Assume that LRTA* maintains *h*-values across a series of search tasks in the same safely explorable state space with the same set of goal states.
 - Then, the number of search tasks for which LRTA* with admissible initial *h*-values reaches a goal state with an execution cost of more than $\delta(s, T)$ is bounded from above.
 - Proof (informal):
 - Assume that LRTA* solves the same search task repeatedly from the same start state.
 - The *h*-values no longer change after a finite number of searches.
 - LRTA* follows the same minimal-cost path from the start to a goal during all future searches.

StFX

• Improvement of execution cost:

h-value surface - -

- Some variants of LRTA* have been proposed.
- Variants with local search spaces of varying sizes:
 - With small local search spaces, you need to executes a lot of actions before escaping depressions (valleys).
 - You can increase the size of the local search spaces to find a path outside the valley.

- How can you detect valleys?
 - If the current *h*-value is smaller than the cost-to-go of every actions.
- When you detect a depression:
 - You start increasing the local search space.
 - You stop when all the states part of the valley are inside it.
 - States stop to be included when an action exists with a cost-to-go inferior to the *h*-value.

- Variants with minimal lookahead.
 - LRTA* needs to predict the successor states of actions.
 - We can decrease its lookahead further.
 - We associate the values with state-action pairs rather than states.
 - We call it q-value q(u, a).

```
Procedure Min-LRTA*
Input: Search task with initial q-values
Side Effect: Updated q-values
```

```
\begin{array}{ll} u \leftarrow s & \qquad ;; \mbox{ Start in start state } \\ \mbox{while } (u \notin T) & \qquad ;; \mbox{ While goal not achieved } \\ a \leftarrow \arg\min_{a \in A(u)} q(u,a) & \qquad ;; \mbox{ Select action } \\ q(u,a) \leftarrow \max\{q(u,a), w(u,a) + \min_{a' \in A(\mbox{ Succ}(u,a))} q(\mbox{ Succ}(u,a),a')\} & \qquad ;; \mbox{ Update } q\mbox{-value } \\ u \leftarrow a(u) & \qquad ;; \mbox{ Execute action } \end{array}
```

- Reinforcement learning is based on q-values.
- You try to learn the value of each action in each states.
- It's very interesting, because it works in model-free problem.
 - Problem where you don't know the model.